
Embedded Systems

dridhOn one of the best embedded training institutes in Bangalore will make you an eminent
embedded systems engineer and makes you work in top companies. This embedded systems
training will make your work in real-world projects and makes you an expert in all three
components of the embedded system such as hardware, application software, real-time
operating system (RTOS). We will award you embedded system course certification after
completion of the course that makes you work in large organizations in the world.

64 hours of blended learning
64 hours of Online self-paced learning 16 hours of instructor-led training
Five lesson-end knowledge checks
 1 real-life course-end project 20+ assisted practices on all modules
Industry-recognized course completion certificate

Online Live Virtual Instructor Led Training

Introduction to embedded system and applications
Interfacing of tools and peripherals
Learning of 8051 microcontroller system
I/O programming
C – The dominant language among embedded systems
Simulation of an embedded system using Keil
Source control using online repositories
Creating your own Real Time Operating System (RTOS)

Skills covered in embedded system course,

Complete at least 85 percent of the course or attend one complete batch
 Successful completion and evaluation of the project

Course Overview:

Training Features:

Delivery Mode:

Target Audiance:

Key Learning Outcomes:

Certification Details:

IT professionals
Fresh graduates who are interested build their career in embedded system can take this
course
Degree pursuing individuals can take this embedded systems course

dridhOn embedded system training joined by,

What is C?
Data Types
Variables
Naming Conventions for C Variables
Printing and Initializing Variables

if
if else
while
for
Endless Loops
do while
break and continue
switch
else if

#define
Macros
#include
Conditional Compilation
#ifdef
#ifndef

Function Declarations
Function Prototypes
Returning a Value or Not
Arguments and Parameters
Organization of C Source Files
Extended Example

Defining the Problem Space
A Programming Example
Bit Wise Operators
Bit Manipulation Functions
Circular Shifts

Fundamental Concepts
Aggregate Operations
String Functions
Array Dimensions
An Array as an Argument to a Function
String Arrays
Example Programs

GETTING STARTED:

CONTROL FLOW CONSTRUCTS:

THE C PRE PROCESSOR:

MORE ON FUNCTIONS:

BIT MANIPULATION:

STRINGS & ARRAY:

Fundamental Concepts
Pointer Operators and Operations
Changing an Argument with a Function Call
Pointer Arithmetic
Array Traversal
String Functions with Pointers
Pointer Difference
Prototypes for String Parameters
Relationship Between an Array and a Pointer
The Pointer Notation *p++

Dynamic Storage Allocation -malloc
Functions Returning a Pointer
Initialization of Pointers
gets -a Function Returning a Pointer
An Array of Character Pointers
Two Dimensional Arrays vs. Array of Pointers
Command Line Arguments
Pointers to Pointers
Practice with Pointers
Function Pointers

Fundamental Concepts
Describing a Structure
Creating Structures
Operations on Structures
Functions Returning Structures
Passing Structures to Functions
Pointers to Structures
Array of Structures
Functions Returning a Pointer to a Structure
Structure Padding

typedef-New Name for an Existing Type
Bit Fields
unions
Non-HomogeneousArrays
Enumerations

System Calls vs. Library Calls
Opening Disk Files
fopen
I/O Library Functions
Copying a File
Character Input vs. Line Input
scanf
printf
fclose
Servicing Errors -errno.h
Feofo

POINTERS (PART 1):

POINTERS (PART 2):

STRUCTURES:

STRUCTURE RELATED ITEMS (UNION):

FILE I/O:

Block Scope
Function Scope
File Scope
Program Scope
The auto Specifier
The static Specifier
The register Specifier
The extern Specifier
The Const Modifier
The Volatile Modifier

What is Embedded Systems?
Difference b/w Micro processor & Micro
Controller
CISC Vs RISC
Architecture of8,16,32-bitProcessor
Software Used, Compilation, Debugging
Example Programs (LCD, RELAY, STEPPER MOTOR)
Embedded Software Life Cycle TestingSPI, ADC,
Serial Communication, Protocols (I2C , CAN, Ethernet)

Linux Features
Linux Kernel Source Directory Structure
Linux Kernel Components
User Mode Vs Kernel Mode
System Initialization –Booting Process

Introduction To Makefile
How to write Makefile to compile programs on Linux
Building static and dynamic libraries
LABs

Importance of Makefiles
Procedure to recompile the kernel
LAB

Process Management
Process Control Block (PCB)
Types Of Processes
States Of Process
How to Create Process?
Process Scheduling
LABs

SCOPE OF VARIABLES:

INTRODUCTION TO EMBEDDED:

Linux OS Architecture:

Introduction to Linux tools, compilers and utilities:

Kernel compilation:

Detail study of Linux OS components:

What is Thread?
Thread Control Block (TCB)
User-level Vs Kernel level Threads
How to create and cancel threads?
Thread Scheduling
Process Vs Threads
LABs

What are interrupts?
Types Of Interrupt
Interrupt Handling
Interrupt Service Routine (ISR)
Interrupt Latency

What are signals in Linux OS?
Signal Implementation
Signal Handling
LABs

Introduction To Inter-process communication mechanism
Pipes, Message Queue and Shared Memory
Semaphores and Mutex
LABs

TCP/IP and UDP socket programming
LABs

Linux File system and System call interface
Introduction To System Call Mechanism
Significance Of System Calls
LABs

Segmentation and Paging
Swapping and demand to page
malloc(), kmalloc() and free()

Thread Management:

Interrupt Management:

Signal handling

Inter-Process communication (IPCs):

Socket programming on Linux:

Linux Kernel and Device driver Programming:

Memory Management Unit:

Module Basics
Introduction to Modules
Writing Your first kernel module
Statically linked vs Dynamically linked
Exporting symbols from modules
The kernel symbol table
Concurrency in the kernel
Module Parameters
Version dependency
LABs

Role of the Device Drivers
Role of Virtual file system
Classes of devices
Registering a character device driver
File operations and ioctls
Reading and writing into char devices
LABs

Registering block driver
File operations and ioctls
Handling requests
Write RAM type of disk driver
LABs

The net_device structure in detail
Packet transmission
Packet reception
Simulating a network device
LABs

Intro to the target board (Samsung mini2440– ARM 9)
Introduction to ARM9 architecture

Installing Sources, Patching
Installing the GCC toolchain
Set Cross Compiling Environment
LABs

Recompilation and flash Kernel on ARM9 board
LABs

Linux Kernel and Device driver Programming:

An introduction to device drivers:

Block Device Drivers:

Network Device Drivers:

Embedded Linux On ARM9:

Installation of cross compilation tool chain:

Porting Linux on ARM9:

Busybox
A Small Application example
Flashing the new root filesystem
Compilation procedure
LABs

Services on Board
Compiling and setting up services
An example of service – LABS

RTOS Source Organization
Configuration Of RTOS
Implementation Of RTOS

Steps for porting RTOS On ARM7
LAB(Demonstration)- Port Open Source RTOS On ARM Board

Task Management
Multitasking
Context Switching
Inter-Process/Task Communication (IPC)
LABs (Demonstration)

Learn about Key principles of Linux OS
Expertise on a device driver for the target board
Porting Linux on advanced cross-platform i.e. ARM 9
Get good expertise on Linux based embedded system

The Root Filesystem:

Write device driver for ARM9 board:

Structure and implementation of open-source RTOS:

Port RTOS on ARM Board:

Real-Time Operating Fundamentals:

References and Guideline for Linux based embedded system Skills developed after completion
of course:

